Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.210
1.
Physiol Res ; 73(2): 189-203, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710051

This comprehensive review explores the physiological and pathophysiological significance of VPS13A, a protein encoded by the VPS13A gene. The VPS13A gene is associated with Chorea-acanthocytosis (ChAc), a rare hereditary neurodegenerative disorder. The review covers essential aspects, beginning with the genetics of VPS13A, highlighting its role in the pathogenesis of ChAc, and addressing the spectrum of genetic variants involved. It delves into the structure and function of the VPS13A protein, emphasizing its presence in various tissues and its potential involvement in protein trafficking and lipid homeostasis. Molecular functions of VPS13A in the brain tissue and other cell types or tissues with respect to their role in cytoskeletal regulation and autophagy are explored. Finally, it explores the intriguing link between VPS13A mutations, lipid imbalances, and neurodegeneration, shedding light on future research directions. Overall, this review serves as a comprehensive resource for understanding the pivotal role of VPS13A in health and disease, particularly in the context of ChAc. Key words: Chorein , Tumor, Actin, Microfilament, Gene expression, Chorea-acanthocytosis.


Neuroacanthocytosis , Vesicular Transport Proteins , Humans , Animals , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Neuroacanthocytosis/metabolism , Neuroacanthocytosis/genetics , Neuroacanthocytosis/physiopathology , Neuroacanthocytosis/pathology , Mutation , Lipid Metabolism/physiology , Lipid Metabolism/genetics
2.
Rev Invest Clin ; 76(2): 65-79, 2024.
Article En | MEDLINE | ID: mdl-38718804

UNASSIGNED: Excess body weight has become a global epidemic and a significant risk factor for developing chronic diseases, which are the leading causes of worldwide morbidities. Adipose tissue (AT), primarily composed of adipocytes, stores substantial amounts of energy and plays a crucial role in maintaining whole-body glucose and lipid metabolism. This helps prevent excessive body fat accumulation and lipotoxicity in peripheral tissues. In addition, AT contains endothelial cells and a substantial population of immune cells (constituting 60-70% of non-adipocyte cells), including macrophages, T and B lymphocytes, and natural killer cells. These resident immune cells engage in crosstalk with adipocytes, contributing to the maintenance of metabolic and immune homeostasis in AT. An exacerbated inflammatory response or inadequate immune resolution can lead to chronic systemic low-grade inflammation, triggering the development of metabolic alterations and the onset of chronic diseases. This review aims to elucidate the regulatory mechanisms through which immune cells influence AT function and energy homeostasis. We also focus on the interactions and functional dynamics of immune cell populations, highlighting their role in maintaining the delicate balance between metabolic health and obesity-related inflammation. Finally, understanding immunometabolism is crucial for unraveling the pathogenesis of metabolic diseases and developing targeted immunotherapeutic strategies. These strategies may offer innovative avenues in the rapidly evolving field of immunometabolism. (Rev Invest Clin. 2024;76(2):65-79).


Adipose Tissue , Inflammation , Metabolic Diseases , Obesity , Humans , Adipose Tissue/metabolism , Adipose Tissue/immunology , Obesity/immunology , Obesity/metabolism , Inflammation/immunology , Inflammation/metabolism , Metabolic Diseases/immunology , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Energy Metabolism/physiology , Adipocytes/metabolism , Adipocytes/immunology , Lipid Metabolism/physiology , Animals , Homeostasis
3.
Bioresour Technol ; 401: 130731, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663637

There is limited research on physiological and degradation mechanisms of yellow mealworm, a novel organic waste converter, in processing lignocellulosic wastes. This study has selected two types of lignocellulosic wastes, distillers' grains (DG) and maize straw (MS), to feed yellow mealworms. This study investigated the effects of lignocellulosic wastes on the growth, antioxidant system, microbiome, and lipidome of yellow mealworms. The relative growth of lignocellulosic waste group was not significantly different from wheat bran. The antioxidant level was elevated in DG. MS was significantly enriched in cellulose-degrading bacteria in the gut and was accompanied by disturbances in lipid metabolism. The correlation coefficients were used to construct a network connecting diet, microbiota, and lipids. The correlation analysis indicated that two sphingolipids, hexylglyceramide and dihydroglyceramide, were strongly and positively linked with the dominating species. This study provides comprehensive information on physiological and mechanism of mealworms in process of treating lignocellulosic waste.


Gastrointestinal Microbiome , Lignin , Lipid Metabolism , Tenebrio , Lignin/metabolism , Animals , Lipid Metabolism/physiology , Gastrointestinal Microbiome/physiology , Tenebrio/metabolism , Antioxidants/metabolism , Zea mays/metabolism
4.
J Endocrinol ; 261(3)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38614123

The glucagon receptor family are typical class B1 G protein-coupled receptors (GPCRs) with important roles in metabolism, including the control of pancreas, brain, and liver function. As proteins with seven transmembrane domains, GPCRs are intimately in contact with lipid bilayers and therefore can be putatively regulated by interactions with their lipidic components, including cholesterol, sphingolipids, and other lipid species. Additionally, these receptors, as well as the agonists they bind to, can undergo lipid modifications, which can influence their binding capacity and/or elicit modified or biased signalling profiles. While the effect of lipids, and in particular cholesterol, has been widely studied for other GPCR classes, information about their role in regulating the glucagon receptor family is only beginning to emerge. Here we summarise our current knowledge on the effects of cholesterol modulation of glucagon receptor family signalling and trafficking profiles, as well as existing evidence for specific lipid-receptor binding and indirect effects of lipids via lipid modification of cognate agonists. Finally, we discuss the different methodologies that can be employed to study lipid-receptor interactions and summarise the importance of this area of investigation to increase our understanding of the biology of this family of metabolically relevant receptors.


Cholesterol , Receptors, Glucagon , Signal Transduction , Humans , Receptors, Glucagon/metabolism , Animals , Cholesterol/metabolism , Signal Transduction/physiology , Lipid Metabolism/physiology
5.
Sci Rep ; 14(1): 7742, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565895

Evidence from genetic and epidemiological studies point to lipid metabolism defects in both the brain and periphery being at the core of Alzheimer's disease (AD) pathogenesis. Previously, we reported that central inhibition of the rate-limiting enzyme in monounsaturated fatty acid synthesis, stearoyl-CoA desaturase (SCD), improves brain structure and function in the 3xTg mouse model of AD (3xTg-AD). Here, we tested whether these beneficial central effects involve recovery of peripheral metabolic defects, such as fat accumulation and glucose and insulin handling. As early as 3 months of age, 3xTg-AD mice exhibited peripheral phenotypes including increased body weight and visceral and subcutaneous white adipose tissue as well as diabetic-like peripheral gluco-regulatory abnormalities. We found that intracerebral infusion of an SCD inhibitor that normalizes brain fatty acid desaturation, synapse loss and learning and memory deficits in middle-aged memory-impaired 3xTg-AD mice did not affect these peripheral phenotypes. This suggests that the beneficial effects of central SCD inhibition on cognitive function are not mediated by recovery of peripheral metabolic abnormalities. Given the widespread side-effects of systemically administered SCD inhibitors, these data suggest that selective inhibition of SCD in the brain may represent a clinically safer and more effective strategy for AD.


Alzheimer Disease , Stearoyl-CoA Desaturase , Mice , Animals , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Lipid Metabolism/physiology , Lipogenesis , Disease Models, Animal , Mice, Transgenic
6.
Obesity (Silver Spring) ; 32(5): 949-958, 2024 May.
Article En | MEDLINE | ID: mdl-38650517

OBJECTIVE: We investigated how changes in 24-h respiratory exchange ratio (RER) and substrate oxidation during fasting versus an energy balance condition influence subsequent ad libitum food intake. METHODS: Forty-four healthy, weight-stable volunteers (30 male and 14 female; mean [SD], age 39.3 [11.0] years; BMI 31.7 [8.3] kg/m2) underwent 24-h energy expenditure measurements in a respiratory chamber during energy balance (50% carbohydrate, 30% fat, and 20% protein) and 24-h fasting. Immediately after each chamber stay, participants were allowed 24-h ad libitum food intake from computerized vending machines. RESULTS: Twenty-four-hour RER decreased by 9.4% (95% CI: -10.4% to -8.5%; p < 0.0001) during fasting compared to energy balance, reflecting a decrease in carbohydrate oxidation (mean [SD], -2.6 [0.8] MJ/day; p < 0.0001) and an increase in lipid oxidation (2.3 [0.9] MJ/day; p < 0.0001). Changes in 24-h RER and carbohydrate oxidation in response to fasting were correlated with the subsequent energy intake such that smaller decreases in fasting 24-h RER and carbohydrate oxidation, but not lipid oxidation, were associated with greater energy intake after fasting (r = 0.31, p = 0.04; r = 0.40, p = 0.007; and r = -0.27, p = 0.07, respectively). CONCLUSIONS: Impaired metabolic flexibility to fasting, reflected by an inability to transition away from carbohydrate oxidation, is linked with increased energy intake.


Energy Intake , Energy Metabolism , Fasting , Humans , Female , Male , Adult , Energy Metabolism/physiology , Middle Aged , Healthy Volunteers , Oxidation-Reduction , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/metabolism , Lipid Metabolism/physiology , Eating/physiology , Body Mass Index
7.
Respir Res ; 25(1): 176, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658970

BACKGROUND: Abnormal lipid metabolism has recently been reported as a crucial signature of idiopathic pulmonary fibrosis (IPF). However, the origin and biological function of the lipid and possible mechanisms of increased lipid content in the pathogenesis of IPF remains undetermined. METHODS: Oil-red staining and immunofluorescence analysis were used to detect lipid accumulation in mouse lung fibrosis frozen sections, Bleomycin-treated human type II alveolar epithelial cells (AECIIs) and lung fibroblast. Untargeted Lipid omics analysis was applied to investigate differential lipid species and identified LysoPC was utilized to treat human lung fibroblasts and mice. Microarray and single-cell RNA expression data sets identified lipid metabolism-related differentially expressed genes. Gain of function experiment was used to study the function of 3-hydroxy-3-methylglutaryl-Coa Synthase 2 (HMGCS2) in regulating AECIIs lipid metabolism. Mice with AECII-HMGCS2 high were established by intratracheally delivering HBAAV2/6-SFTPC- HMGCS2 adeno-associated virus. Western blot, Co-immunoprecipitation, immunofluorescence, site-directed mutation and flow cytometry were utilized to investigate the mechanisms of HMGCS2-mediated lipid metabolism in AECIIs. RESULTS: Injured AECIIs were the primary source of accumulated lipids in response to Bleomycin stimulation. LysoPCs released by injured AECIIs could activate lung fibroblasts, thus promoting the progression of pulmonary fibrosis. Mechanistically, HMGCS2 was decreased explicitly in AECIIs and ectopic expression of HMGCS2 in AECIIs using the AAV system significantly alleviated experimental mouse lung fibrosis progression via modulating lipid degradation in AECIIs through promoting CPT1A and CPT2 expression by interacting with PPARα. CONCLUSIONS: These data unveiled a novel etiological mechanism of HMGCS2-mediated AECII lipid metabolism in the genesis and development of pulmonary fibrosis and provided a novel target for clinical intervention.


Down-Regulation , Fibroblasts , Hydroxymethylglutaryl-CoA Synthase , Lipid Metabolism , Mice, Inbred C57BL , Animals , Humans , Male , Mice , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Bleomycin/toxicity , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/pathology , Hydroxymethylglutaryl-CoA Synthase/metabolism , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/biosynthesis , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/genetics , Lipid Metabolism/physiology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/genetics
9.
Metabolism ; 155: 155905, 2024 Jun.
Article En | MEDLINE | ID: mdl-38548128

CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.


Autophagy , CD36 Antigens , Disease Progression , Lipid Metabolism , Neoplasms , Humans , CD36 Antigens/metabolism , CD36 Antigens/physiology , Autophagy/physiology , Lipid Metabolism/physiology , Neoplasms/metabolism , Neoplasms/pathology , Animals
10.
Life Sci ; 345: 122567, 2024 May 15.
Article En | MEDLINE | ID: mdl-38492919

The aim was to understand the direct impact of aerobic short-term exercise on lipid metabolism, specifically in regulating the mitochondrial carrier homolog 2 (MTCH2) and how it interferes with lipid metabolism in mesenteric adipose tissue. Swiss mice were divided into three groups: control, sedentary obese, and exercised obese. The obese groups were induced into obesity for fourteen weeks of a high-fat diet, and the trained submitted to seven aerobic exercise sessions. The exercise proved the significant increase of the pPerilipin-1, a hormone-sensitive lipase gene, and modulates lipid metabolism by increasing the expression of Mtch2 and acetyl Co-A carboxylase, perhaps occurring as feedback to regulate lipid metabolism in adipose tissue. In conclusion, we demonstrate, for the first time, how aerobic physical exercise increases Mtch2 transcription in mesenteric adipose tissue. This increase was due to changes in energy demand caused by exercise, confirmed by observing the significant reduction in mesenteric adipose tissue mass in the exercised group. Also, we showed that physical exercise increased the phosphorylative capacity of PLIN1, a protein responsible for the degradation of fatty acids in the lipid droplet, providing acyl and glycerol for cellular metabolism. Although our findings demonstrate evidence of MTCH2 as a protein that regulates lipid homeostasis, scant knowledge exists concerning the signaling of the MTCH2 pathway in regulatingfatty acid metabolism. Therefore, unveiling the means of molecular signaling of MTCH2 demonstrates excellent potential for treating obesity.


Adipose Tissue , Lipid Metabolism , Mitochondrial Membrane Transport Proteins , Obesity , Physical Conditioning, Animal , Animals , Mice , Adipose Tissue/metabolism , Diet, High-Fat/adverse effects , Lipids , Mice, Obese , Mitochondrial Membrane Transport Proteins/metabolism , Obesity/metabolism , Physical Conditioning, Animal/physiology , Lipid Metabolism/genetics , Lipid Metabolism/physiology
11.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article En | MEDLINE | ID: mdl-38542126

Lipophagy is a cellular pathway targeting the lysosomal degradation of lipid droplets, playing a role in promoting lipid turnover and renewal. Abnormal lipophagy processes can lead to the occurrence and development of non-alcoholic fatty liver disease (NAFLD), characterized by the deposition of lipid droplets (LDs) in the liver. The importance of exercise training in preventing and improving NAFLD has been well-established, but the exact mechanisms remain unclear. Recent research findings suggest that lipophagy may serve as a crucial hub for liver lipid turnover under exercise conditions. Exercise may alleviate hepatic lipid accumulation and mitigate inflammatory responses and fibrosis through lipophagy, thereby improving the onset and progression of NAFLD.


Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/metabolism , Lipid Metabolism/physiology , Liver/metabolism , Autophagy/physiology , Lipid Droplets/metabolism , Exercise Therapy , Lipids
12.
Br J Oral Maxillofac Surg ; 62(3): 290-298, 2024 Apr.
Article En | MEDLINE | ID: mdl-38461076

Ameloblastoma (AM) is characterised by local aggressiveness and bone resorption. To our knowledge, the proteomic profile of bone adjacent to AM has not previously been explored. We therefore looked at the differential proteins in cancellous bone (CB) adjacent to AM and normal CB from the mandible. CB proteins were extracted, purified, quantified, and analysed by liquid chromatography-mass spectrometry (LC-MS) using samples from five patients with AM. These proteins were further investigated using gene ontology for additional functional annotation and enrichment. Proteins that met the screening requirements of expression difference ploidy > 1.5-fold (upregulation and downregulation) and p < 0.05 were subsequently deemed differential proteins. Immunohistochemical staining was performed to confirm the above findings. Compared with normal mandibular CB, 151 differential proteins were identified in CB adjacent to the mandibular AM. These were mainly linked to cellular catabolic processes, lipid metabolism, and fatty acids (FA) metabolism. LC-MS and immunohistochemistry showed that CD36 was one of the notably decreased proteins in CB bordering the AM compared with normal mandibular CB (p = 0.0066 and p = 0.0095, respectively). CD36 expression in CB correlates with bone remodelling in AM, making CD36 a viable target for therapeutic approaches.


Ameloblastoma , Bone Remodeling , CD36 Antigens , Proteomics , Humans , Ameloblastoma/metabolism , Ameloblastoma/pathology , Bone Remodeling/physiology , CD36 Antigens/metabolism , CD36 Antigens/analysis , Mandibular Neoplasms/metabolism , Mandibular Neoplasms/pathology , Chromatography, Liquid , Cancellous Bone/metabolism , Lipid Metabolism/physiology , Adult , Female , Male , Mandible/metabolism , Mass Spectrometry , Fatty Acids/metabolism , Middle Aged , Proteome/analysis
13.
Obes Rev ; 25(6): e13724, 2024 Jun.
Article En | MEDLINE | ID: mdl-38408757

Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.


Adipose Tissue , Inflammation , Humans , Adipose Tissue/metabolism , Inflammation/metabolism , Animals , Signal Transduction , Obesity/metabolism , Lipid Metabolism/physiology , Insulin Resistance
14.
Physiol Rev ; 104(3): 1021-1060, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38300523

Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."


Glucagon , Glucose , Liver , Humans , Glucagon/metabolism , Liver/metabolism , Animals , Glucose/metabolism , Lipid Metabolism/physiology , Homeostasis/physiology
15.
Prostate ; 84(7): 644-655, 2024 May.
Article En | MEDLINE | ID: mdl-38409853

BACKGROUND: Lipid reprogramming is a known mechanism to increase the energetic demands of proliferating cancer cells to drive and support tumorigenesis and progression. Elevated lipid droplets (LDs) are a well-known alteration of lipid reprogramming in many cancers, including prostate cancer (PCa), and are associated with high tumor aggressiveness as well as therapy resistance. The mechanism of LD accumulation and specific LD functions are still not well understood; however, it has been shown that LDs can form as a protective mechanism against lipotoxicity and lipid peroxidation in the cell. METHODS: This study investigated the significance of LDs in PCa. This was done by staining, imaging, image quantification, and flow cytometry analysis of LDs in PCa cells. Additionally, lipidomics and metabolomics experiments were performed to assess the difference of metabolites and lipids in control and treatment surviving cancer cells. Lastly, to assess clinical significance, multiple publicly available datasets were mined for LD-related data. RESULTS: Our study demonstrated that prostate and breast cancer cells that survive 72 h of chemotherapy treatment have elevated LDs. These LDs formed in tandem with elevated reactive oxygen species levels to sequester damaged and excess lipids created by oxidative stress, which promoted cell survival. Additionally, by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) (which catalyzes triglyceride synthesis into LDs) and treating with chemotherapy simultaneously, we were able to decrease the overall amount of LDs and increase cancer cell death compared to treating with chemotherapy alone. CONCLUSIONS: Overall, our study proposes a potential combination therapy of DGAT1 inhibitors and chemotherapy to increase cancer cell death.


Lipid Droplets , Prostatic Neoplasms , Male , Humans , Lipid Droplets/metabolism , Lipid Droplets/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Prostatic Neoplasms/pathology , Lipid Metabolism/physiology , Lipids/physiology
16.
Dev Cell ; 59(6): 759-775.e5, 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38354739

Lipid droplets (LDs) are fat storage organelles critical for energy and lipid metabolism. Upon nutrient exhaustion, cells consume LDs via gradual lipolysis or via lipophagy, the en bloc uptake of LDs into the vacuole. Here, we show that LDs dock to the vacuolar membrane via a contact site that is required for lipophagy in yeast. The LD-localized LDO proteins carry an intrinsically disordered region that directly binds vacuolar Vac8 to form vCLIP, the vacuolar-LD contact site. Nutrient limitation drives vCLIP formation, and its inactivation blocks lipophagy, resulting in impaired caloric restriction-induced longevity. We establish a functional link between lipophagy and microautophagy of the nucleus, both requiring Vac8 to form respective contact sites upon metabolic stress. In sum, we identify the tethering machinery of vCLIP and find that Vac8 provides a platform for multiple and competing contact sites associated with autophagy.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Lipid Droplets/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vacuoles/metabolism , Lipid Metabolism/physiology , Autophagy
17.
Am J Physiol Endocrinol Metab ; 326(5): E709-E722, 2024 May 01.
Article En | MEDLINE | ID: mdl-38416071

Obesity and its related metabolic complications represent a significant global health challenge. Central to this is the dysregulation of glucolipid metabolism, with a predominant focus on glucose metabolic dysfunction in the current research, whereas adipose metabolism impairment garners less attention. Exosomes (EXs), small extracellular vesicles (EVs) secreted by various cells, have emerged as important mediators of intercellular communication and have the potential to be biomarkers, targets, and therapeutic tools for diverse diseases. In particular, EXs have been found to play a role in adipose metabolism by transporting cargoes such as noncoding RNAs (ncRNA), proteins, and other factors. This review article summarizes the current understanding of the role of EXs in mediating adipose metabolism disorders in obesity. It highlights their roles in adipogenesis (encompassing adipogenic differentiation and lipid synthesis), lipid catabolism, lipid transport, and white adipose browning. The insights provided by this review offer new avenues for developing exosome-based therapies to treat obesity and its associated comorbidities.


Adipogenesis , Adipose Tissue , Exosomes , Lipid Metabolism , Obesity , Exosomes/metabolism , Humans , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Adipogenesis/physiology , Lipid Metabolism/physiology
18.
Trends Endocrinol Metab ; 35(5): 364-366, 2024 May.
Article En | MEDLINE | ID: mdl-38418280

Mitochondrial dysfunctions predominantly cause encephalomyopathies with muscle atrophy and neurodegeneration. However, their impact on other tissues, particularly the gastrointestinal tract, requires further investigation. In a recent report in Nature, Moschandrea et al. used mice deficient in the mitochondrial aminoacyl-tRNA synthetase DARS2 to investigate the role of enterocytic mitochondria in dietary lipid processing and transport. Their work sheds light on the development of gastrointestinal disorders as a result of mitochondrial dysfunction.


Gastrointestinal Diseases , Mitochondria , Animals , Humans , Mitochondria/metabolism , Gastrointestinal Diseases/metabolism , Lipid Metabolism/physiology , Mice
19.
Res Vet Sci ; 169: 105177, 2024 Mar.
Article En | MEDLINE | ID: mdl-38350170

Subclinical ketosis (SCK) in dairy cows is often misdiagnosed because it lacks clinical signs and detection indicators. However, it is highly prevalent and may transform into clinical ketosis if not treated promptly. Due to the negative energy balance, a large amount of fat is mobilized, producing NEFA that exceeds the upper limit of liver processing, which in turn leads to the disturbance of liver lipid metabolism. The silent information regulator 1 (SIRT1) is closely related to hepatic lipid metabolism disorders. Exosomes as signal transmitters, also play a role in the circulatory system. We hypothesize that the circulating exosome-mediated adenosine 5'-monophosphate (AMP)-activated protein kinase alpha (AMPKα)-SIRT1 pathway regulates lipid metabolism disorders in SCK cows. We extracted the exosomes required for the experiment from the peripheral circulating blood of non-ketotic (NK) and SCK cows. We investigated the effect of circulating exosomes on the expression levels of mRNA and protein of the AMPKα-SIRT1 pathway in non-esterified fatty acid (NEFA)-induced dairy cow primary hepatocytes using in vitro cell experiments. The results showed that circulating exosomes increased the expression levels of Lipolysis-related genes and proteins (AMPKα, SIRT1, and PGC-1α) in hepatocytes treated with 1.2 mM NEFA, and inhibited the expression of lipid synthesis-related genes and protein (SREBP-1C). The regulation of exosomes on lipid metabolism disorders caused by 1.2 mM NEFA treatment showed the same trend as for SIRT1-overexpressing adenovirus. The added exosomes could regulate NEFA-induced lipid metabolism in hepatocytes by mediating the AMPKα-SIRT1 pathway, consistent with the effect of transfected SIRT1 adenovirus.


Cattle Diseases , Exosomes , Ketosis , Lipid Metabolism Disorders , Female , Animals , Cattle , Lipid Metabolism/physiology , Sirtuin 1/genetics , Sirtuin 1/metabolism , Sirtuin 1/pharmacology , Fatty Acids, Nonesterified , Exosomes/metabolism , Hepatocytes/metabolism , Liver/metabolism , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/veterinary , AMP-Activated Protein Kinases/genetics , Ketosis/veterinary , Cattle Diseases/metabolism
20.
Appl Physiol Nutr Metab ; 49(5): 649-658, 2024 May 01.
Article En | MEDLINE | ID: mdl-38241659

Deciphering lipid metabolism in white adipose tissue (WAT) depots during weight gain is important to understand the heterogeneity of WAT and its roles in obesity. Here, we examined the expression of key enzymes of lipid metabolism and changes in the morphology of representative visceral (epididymal) and subcutaneous (inguinal) WAT (eWAT and iWAT, respectively)-in adult male rats acclimated to cold (4 ± 1 °C) for 45 days and reacclimated to room temperature (RT, 22 ± 1 °C) for 1, 3, 7, 12, 21, or 45 days. The relative mass of both depots decreased to a similar extent after cold acclimation. However, fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase (G6PDH), and medium-chain acyl-CoA dehydrogenase (ACADM) protein level increased only in eWAT, whereas adipose triglyceride lipase (ATGL) expression increased only in iWAT. During reacclimation, the relative mass of eWAT reached control values on day 12 and that of iWAT on day 45 of reacclimation. The faster recovery of eWAT mass is associated with higher expression of FAS, acetyl-CoA carboxylase (ACC), G6PDH, and ACADM during reacclimation and a delayed increase in ATGL. The absence of an increase in proliferating cell nuclear antigen suggests that the observed depot-specific mass increase is predominantly due to metabolic adjustments. In summary, this study shows a differential rate of visceral and subcutaneous adipose tissue weight regain during post-cold reacclimation of rats at RT. Faster recovery of the visceral WAT as compared to subcutaneous WAT during reacclimation at RT could be attributed to observed differences in the expression patterns of lipid metabolic enzymes.


Acclimatization , Acyltransferases , Adipose Tissue, White , Cold Temperature , Intra-Abdominal Fat , Subcutaneous Fat , Animals , Male , Subcutaneous Fat/metabolism , Intra-Abdominal Fat/metabolism , Acclimatization/physiology , Adipose Tissue, White/metabolism , Rats , Lipid Metabolism/physiology , Rats, Wistar , Lipase/metabolism , Glucosephosphate Dehydrogenase/metabolism
...